Structure and Properties of Cellulose and Its Derivatives
The widespread recognition of environmental, social, and financial imperatives, the hunt for environmentally friendly, sustainable technology, the escalating waste issue, environmental law requirements, and the depletion of fossil fuel supplies underlie the focus of scientific research on the development of eco-friendly materials. Lignocellulosic fiber is among the most studied natural materials due to its impressive economic and environmental characteristics. However, its use as an alternative to petroleum compounds requires in-depth knowledge of its structure, properties, and interactions with other materials of a different nature. However, even if these fibers have little interest in being used directly in composites, the constituent elements can still be exploited. Cellulose is the element that contributes the most to the structural properties of annual plants, is a good example. The first part of this chapter will describe the annual plant fibers and their structure and molecular organization. At the same time, the second part will deal with the cellulose's physical-chemical characteristics and those of its derivatives.
This is a preview of subscription content, log in via an institution to check access.
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 149.79 Price includes VAT (France)
Softcover Book EUR 189.89 Price includes VAT (France)
Hardcover Book EUR 189.89 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
- Ablouh E-H, Brouillette F, Taourirte M, Sehaqui H, El Achaby M, Belfkira A (2021) A highly efficient chemical approach to producing green phosphorylated cellulosic macromolecules. RSC Adv 11:24206–24216. https://doi.org/10.1039/D1RA02713AArticleCASGoogle Scholar
- Ablouh EH, Kassab Z, Semlali Aouragh Hassani FZ, El Achaby M, Sehaqui H (2022) Phosphorylated cellulose paper as highly efficient adsorbent for cadmium heavy metal ion removal in aqueous solutions. RSC Adv 12:1084–1094. https://doi.org/10.1039/d1ra08060aArticleCASGoogle Scholar
- Ait Benhamou A, Boussetta A, Kassab Z, Nadifiyine M, Hamid Salim M, Grimi N, EL Achaby M, Moubarik A (2021a) Investigating the characteristics of cactus seeds by-product and their use as a new filler in phenol formaldehyde wood adhesive. Int J Adhes Adhes 110: 102940. https://doi.org/10.1016/j.ijadhadh.2021.102940
- Ait Benhamou A, Kassab Z, Boussetta A, Salim MH, Ablouh E-H, Nadifiyine M, Qaiss AEK, Moubarik A, El Achaby M (2022) Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: extraction and properties. Int J Biol Macromol 203: 302−311. https://doi.org/10.1016/j.ijbiomac.2022.01.163
- Ait Benhamou A, Kassab Z, Nadifiyine M, Salim MH, Sehaqui H, Moubarik A, El Achaby M (2021) Extraction, characterization and chemical functionalization of phosphorylated cellulose derivatives from giant reed plant. Cellulose 28:4625–4642. https://doi.org/10.1007/s10570-021-03842-6ArticleCASGoogle Scholar
- Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322. https://doi.org/10.1016/j.matdes.2011.09.023ArticleCASGoogle Scholar
- Bahrami B, Behzad T, Zamani A, Heidarian P, Nasri-Nasrabadi B (2018) Optimal design of ozone bleaching parameters to approach cellulose nanofibers extraction from sugarcane bagasse fibers. J Polym Environ 26:4085–4094. https://doi.org/10.1007/s10924-018-1277-5ArticleCASGoogle Scholar
- Ballesteros LF, Michelin M, Augusto A, José V, Teixeira A, Cerqueira MÂ (2018) Springer briefs in molecular science biobased polymers Lignocellulosic Materials and Their Use in Bio-based Packaging. pp 13–33 Google Scholar
- Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134: 429−437. https://doi.org/10.1016/j.carbpol.2015.08.024
- Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M (2020) Relationship between structural and dielectric properties of Zn-substituted Ba 5 CaTi 2–x Zn x Nb 8 O 30 tetragonal tungsten bronze. CrystEngComm. https://doi.org/10.1039/D0CE01561JArticleGoogle Scholar
- Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass Uusing different delignification approaches. J Polym Environ 29:130–142. https://doi.org/10.1007/s10924-020-01858-wArticleCASGoogle Scholar
- Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206. https://doi.org/10.1016/j.carbpol.2011.06.015ArticleCASGoogle Scholar
- Boujemaoui A (2016) Surface modification of nanocellulose towards composite applications Google Scholar
- Chaouf S, El Barkany S, Jilal I, El Ouardi Y, Abou-salama M, Loutou M, El-Houssaine A, El-Ouarghi H, El Idrissi A, Amhamdi H (2019) Anionic reverse microemulsion grafting of acrylamide (AM) on HydroxyEthylCellulose (HEC): synthesis, characterization and application as new ecofriendly low-cost flocculant. J Water Process Eng 31:100807. https://doi.org/10.1016/j.jwpe.2019.100807ArticleGoogle Scholar
- Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J (2018) Correction to: comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps. Cellulose 25:895–895. https://doi.org/10.1007/s10570-017-1553-xArticleCASGoogle Scholar
- El Achaby M, El Miri N, Hannache H, Gmouh S, Trabadelo V, Aboulkas A, Ben Youcef H (2018) Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability. Cellulose 25:6603–6619. https://doi.org/10.1007/s10570-018-2047-1ArticleCASGoogle Scholar
- El Achaby M, Fayoud N, Figueroa-Espinoza MC, Ben Youcef H, Aboulkas A (2018) New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agro-waste material: application to removal of dyes from waste water. RSC Adv 8:5212–5224. https://doi.org/10.1039/c7ra10239aArticleCASGoogle Scholar
- El Achaby M, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691. https://doi.org/10.1016/j.ijbiomac.2017.08.067ArticleCASGoogle Scholar
- El Achaby M, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: application for improving the tensile properties of biopolymer nanocomposite films. Ind Crops Prod 112:499–510. https://doi.org/10.1016/j.indcrop.2017.12.049ArticleCASGoogle Scholar
- El Bourakadi K, Bouhfid R, Qaiss A el K (2021) Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles Google Scholar
- Essaghraoui A, Khatib K, Hamdaoui B, Brouillette F, Ablouh E-H, Belfkira A (2021) Handsheet coated by polyvinyl acetate as a drug release system. J Pharm Innov. https://doi.org/10.1007/s12247-021-09548-3ArticleGoogle Scholar
- Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale. https://doi.org/10.1039/c4nr01756kArticleGoogle Scholar
- Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285 ArticleCASGoogle Scholar
- French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4ArticleCASGoogle Scholar
- Grisoni-Colli A, Breschi F, Beccari H (1967) Le langage comme phénomène et comme fonction. J Neurol Sci 4:583–593. https://doi.org/10.1016/0022-510X(67)90037-8ArticleCASGoogle Scholar
- Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. https://doi.org/10.1039/c3cs60204dArticleCASGoogle Scholar
- Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339wArticleCASGoogle Scholar
- Hakeem KR, Jawaid M, Rashid U (2015a) Biomass and bioenergy: applications. Wiley Google Scholar
- Hakeem KR, Jawaid M, Rashid U (2015b) Biomass and bioenergy: applications Google Scholar
- Hamad SSWY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751. https://doi.org/10.1007/s00397-013-0722-6ArticleCASGoogle Scholar
- Heinze T, El Seoud OA, Koschella A (2018) Structure and properties of cellulose and its derivatives. pp 39–172 Google Scholar
- Huang Y, Meng F, Liu R, Yu Y, Yu W (2019) Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose 26:7067–7078. https://doi.org/10.1007/s10570-019-02614-7ArticleCASGoogle Scholar
- Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS. Biomacromolecules 8:1973–1978. https://doi.org/10.1021/bm070113bArticleCASGoogle Scholar
- Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W (2022) Recent development and environmental applications of nanocellulose-based membranes. Membranes (Basel) 12:287. https://doi.org/10.3390/membranes12030287ArticleCASGoogle Scholar
- Jiang F, Lo HY (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. https://doi.org/10.1016/j.carbpol.2013.02.022ArticleCASGoogle Scholar
- Jiang F, Lo HY (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68. https://doi.org/10.1016/j.carbpol.2014.12.064ArticleCASGoogle Scholar
- Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of nanocellulose from various sources. In: handb nanocellulose cellul Nnanocomposites. pp 1–49 https://doi.org/10.1002/9783527689972.ch1
- Kassab Z, Abdellaoui Y, Salim MH, Bouhfid R, Qaiss AEK, El Achaby M (2020) Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr Polym 245:116506. https://doi.org/10.1016/j.carbpol.2020.116506ArticleCASGoogle Scholar
- Kassab Z, Abdellaoui Y, Salim MH, El Achaby M (2020) Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Mater Lett 280:128539 ArticleCASGoogle Scholar
- Kassab Z, Boujemaoui A, Ben Youcef H, Hajlane A, Hannache H, El Achaby M (2019) Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose 26:9567–9581. https://doi.org/10.1007/s10570-019-02767-5ArticleCASGoogle Scholar
- Kassab Z, Kassem I, Hannache H, Bouhfid R, Qaiss AEK, El Achaby M (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303. https://doi.org/10.1007/s10570-020-03097-7ArticleCASGoogle Scholar
- Kassab Z, Mansouri S, Tamraoui Y, Sehaqui H, Hannache H, Qaiss AEK, El Achaby M (2020) Identifying Juncus plant as viable source for the production of micro- and nano-cellulose fibers: application for PVA composite materials development. Ind Crops Prod 144:112035. https://doi.org/10.1016/j.indcrop.2019.112035ArticleCASGoogle Scholar
- Kassem I, Ablouh E-H, El Bouchtaoui F-Z, Kassab Z, Khouloud M, Sehaqui H, Ghalfi H, Alami J, El Achaby M (2021) Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int J Biol Macromol 189:1029–1042. https://doi.org/10.1016/j.ijbiomac.2021.08.093ArticleCASGoogle Scholar
- Kassem I, Ablouh EH, El Bouchtaoui FZ, Kassab Z, Hannache H, Sehaqui H, El Achaby M (2022) Biodegradable all-cellulose composite hydrogel as eco-friendly and efficient coating material for slow-release MAP fertilizer. Prog Org Coatings: 162 Google Scholar
- Kim HJ, Roy S, Rhim JW (2021) Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J Environ Chem Eng 9:106043. https://doi.org/10.1016/j.jece.2021.106043ArticleCASGoogle Scholar
- Langan P, O’Neill HM, Pingali SV, Heller WT, Urban V, Petridis L, Schulz R, Lindner B, Smith JC, Davison BH, Foston M, Ragauskas AJ, Nishiyama Y, Harton S, Evans BR (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68. https://doi.org/10.1039/C3GC41962BArticleCASGoogle Scholar
- Listyanda Kusmono RF, Wildan MW, Ilman MN (2020) Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e05486
- Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju Y-H, Ismadji S (2021) Nanocelluloses: sources, pretreatment, isolations, modification, and its application as the drug carriers. Polymers (Basel) 13:2052. https://doi.org/10.3390/polym13132052ArticleCASGoogle Scholar
- Mahmud MM, Perveen A, Jahan RA, Matin MA, Wong SY, Li X, Arafat MT (2019) Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int J Biol Macromol 130:969–976. https://doi.org/10.1016/j.ijbiomac.2019.03.027ArticleCASGoogle Scholar
- Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550 ArticleCASGoogle Scholar
- Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in Rheology of cellulose nanofibril suspensions. Biomacromolecules 17:2311–2320. https://doi.org/10.1021/acs.biomac.6b00668ArticleCASGoogle Scholar
- Niemelä K (2010) Cellulose chemistry and technology: editorial. In: Arthur JC (ed) Cellulose Chemistry and Technology. American Chemical Society, Washington, D. C. Google Scholar
- Nehra P, Chauhan RP (2022) Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran Polym J (English Ed 1:1–8). https://doi.org/10.1007/s13726-022-01040-0
- Nitta I (1962) Fifty years of X-Ray diffraction. Springer, Boston, MA Google Scholar
- Pakutsah K, Aht-Ong D (2020) Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: insights into morphological, physical, and rheological properties. Int J Biol Macromol 145:64–76. https://doi.org/10.1016/j.ijbiomac.2019.12.172ArticleCASGoogle Scholar
- Pech-Cohuo S-C, Canche-Escamilla G, Valadez-González A, Fernández-Escamilla VVA, Uribe-Calderon J (2018) Production and modification of cellulose nanocrystals from agave tequilana weber waste and its effect on the melt Rheology of PLA. Int J Polym Sci 2018:1–14. https://doi.org/10.1155/2018/3567901ArticleCASGoogle Scholar
- Perumal AB, Nambiar RB, Sellamuthu PS, Sadiku ER, Li X, He Y (2022) Extraction of cellulose nanocrystals from areca waste and its application in eco-friendly biocomposite film. Chemosphere 287:132084. https://doi.org/10.1016/j.chemosphere.2021.132084ArticleCASGoogle Scholar
- Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004ArticleGoogle Scholar
- Risite H, Salim MH, Oudinot BT, Ablouh EH, Joyeux HT, Sehaqui H, Razafimahatratra JHA, Qaiss AEK, El Achaby M, Kassab Z (2022) Artemisia annua stems a new sustainable source for cellulosic materials: production and characterization of cellulose microfibers and nanocrystals. Waste Biomass Valorization 13: 2411−2423. https://doi.org/10.1007/s12649-021-01658-w
- Roman M, Winter W (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules Google Scholar
- Salim MH, Kassab Z, Ablouh EH, Sehaqui H, Aboulkas A, Bouhfid R, Qaiss AEK, El Achaby M (2022) Manufacturing of macroporous cellulose monolith from green macroalgae and its application for wastewater treatment. Int J Biol Macromol 200: 182−192. https://doi.org/10.1016/j.ijbiomac.2021.12.153
- Salim MH, Kassab Z, Kassem I, Sehaqui H, Bouhfid R, Jacquemin J, Qaiss AEK, Alami J, El Achaby M (2021) Hybrid nanocomposites based on graphene with cellulose nanocrystals/nanofibrils: from preparation to applications Google Scholar
- Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21 ArticleCASGoogle Scholar
- Semlali Aouragh Hassani F, Salim MH, Kassab Z, Sehaqui H, Ablouh E-H, Qaiss EAK, El Achaby M (2022) Crosslinked starch-coated cellulosic papers as alternative food-packaging materials. RSC Adv 12:8536–8546. https://doi.org/10.1039/d2ra00536kArticleCASGoogle Scholar
- Shafiei-Sabe S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133. https://doi.org/10.1021/la303380vArticleCASGoogle Scholar
- Silva TAL, Zamora HDZ, Varão LHR, Prado NS, Baffi MA, Pasquini D (2018) Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valorization 9:2191–2201. https://doi.org/10.1007/s12649-017-9989-7ArticleCASGoogle Scholar
- Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765. https://doi.org/10.3390/polym2040728ArticleCASGoogle Scholar
- Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydr Polym 136:485–492. https://doi.org/10.1016/j.carbpol.2015.09.055ArticleCASGoogle Scholar
- Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786 ArticleCASGoogle Scholar
- Ure EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998. https://doi.org/10.1021/ma201649f
- Xu Y, Atrens A, Stokes JR (2020) A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Adv Colloid Interface Sci 275:102076. https://doi.org/10.1016/j.cis.2019.102076ArticleCASGoogle Scholar
Author information
Authors and Affiliations
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco Zineb Kassab, Fatima-Zahra Semlali Aouragh Hassani, El-Houssaine Ablouh, Houssine Sehaqui & Mounir El Achaby
- Laboratoire d’Ingénierie et Matériaux, Faculté des Sciences Ben M’sik, Université Hassan II, B.P.7955, Casablanca, Morocco Adil Bahloul
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco Rachid Bouhfid & Abou El Kacem Qaiss
- Zineb Kassab